# Learning, Other Methods ## Linear Homeostatic Plasticity ### Formulation $$ v(t + \Delta t) - v(t) = \lambda \frac{r^* - r}{r^*} $$ *Where:* - $v$, an updatable parameter - $r^*$, target spike rate - $r$, observed spike rate - $\lambda$, learning rate - $t$, current simulation time - $\Delta t$, duration of the simulation step ### Description This method is used for regulating the trainable parameters of a network trained with another plasticity method based on a target spiking rate. As originally provided, weight updates use a positive value for $\lambda$ and delay updates use a negative value for $\lambda$. ### References 1. [DOI:10.1162/neco_a_01674](https://arxiv.org/abs/2011.09380)